Book Image

Deep Reinforcement Learning Hands-On - Second Edition

By : Maxim Lapan
5 (2)
Book Image

Deep Reinforcement Learning Hands-On - Second Edition

5 (2)
By: Maxim Lapan

Overview of this book

Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. With six new chapters devoted to a variety of up-to-the-minute developments in RL, including discrete optimization (solving the Rubik's Cube), multi-agent methods, Microsoft's TextWorld environment, advanced exploration techniques, and more, you will come away from this book with a deep understanding of the latest innovations in this emerging field. In addition, you will gain actionable insights into such topic areas as deep Q-networks, policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. You will also discover how to build a real hardware robot trained with RL for less than $100 and solve the Pong environment in just 30 minutes of training using step-by-step code optimization. In short, Deep Reinforcement Learning Hands-On, Second Edition, is your companion to navigating the exciting complexities of RL as it helps you attain experience and knowledge through real-world examples.
Table of Contents (28 chapters)
26
Other Books You May Enjoy
27
Index

The baseline

In the rest of the chapter, we will take the Atari Pong environment that you are already familiar with and try to speed up its convergence. As a baseline, we will take the same simple DQN that we used in Chapter 8, DQN Extensions, and the hyperparameters will also be the same. To compare the effect of our changes, we will use two characteristics:

  • The number of frames that we consume from the environment every second (FPS). It indicates how fast we can communicate with the environment during the training. It is very common in RL papers to indicate the number of frames that the agent observed during the training; normal numbers are 25M-50M frames. So, if our FPS=200, it will take days. In such calculations, you need to take into account that RL papers commonly report raw environment frames. But if frame skip is used (and it almost always is), this number needs to be divided by the frame skip factor, which is commonly equal to 4. In our measurements, we calculate...