Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Deep Reinforcement Learning Hands-On
  • Table Of Contents Toc
  • Feedback & Rating feedback
Deep Reinforcement Learning Hands-On

Deep Reinforcement Learning Hands-On - Second Edition

By : Maxim Lapan
4.3 (36)
close
close
Deep Reinforcement Learning Hands-On

Deep Reinforcement Learning Hands-On

4.3 (36)
By: Maxim Lapan

Overview of this book

Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. With six new chapters devoted to a variety of up-to-the-minute developments in RL, including discrete optimization (solving the Rubik's Cube), multi-agent methods, Microsoft's TextWorld environment, advanced exploration techniques, and more, you will come away from this book with a deep understanding of the latest innovations in this emerging field. In addition, you will gain actionable insights into such topic areas as deep Q-networks, policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. You will also discover how to build a real hardware robot trained with RL for less than $100 and solve the Pong environment in just 30 minutes of training using step-by-step code optimization. In short, Deep Reinforcement Learning Hands-On, Second Edition, is your companion to navigating the exciting complexities of RL as it helps you attain experience and knowledge through real-world examples.
Table of Contents (28 chapters)
close
close
26
Other Books You May Enjoy
27
Index

The baseline

In the rest of the chapter, we will take the Atari Pong environment that you are already familiar with and try to speed up its convergence. As a baseline, we will take the same simple DQN that we used in Chapter 8, DQN Extensions, and the hyperparameters will also be the same. To compare the effect of our changes, we will use two characteristics:

  • The number of frames that we consume from the environment every second (FPS). It indicates how fast we can communicate with the environment during the training. It is very common in RL papers to indicate the number of frames that the agent observed during the training; normal numbers are 25M-50M frames. So, if our FPS=200, it will take days. In such calculations, you need to take into account that RL papers commonly report raw environment frames. But if frame skip is used (and it almost always is), this number needs to be divided by the frame skip factor, which is commonly equal to 4. In our measurements, we calculate...
Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Deep Reinforcement Learning Hands-On
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon