Book Image

Mastering Computer Vision with TensorFlow 2.x

By : Krishnendu Kar
Book Image

Mastering Computer Vision with TensorFlow 2.x

By: Krishnendu Kar

Overview of this book

Computer vision allows machines to gain human-level understanding to visualize, process, and analyze images and videos. This book focuses on using TensorFlow to help you learn advanced computer vision tasks such as image acquisition, processing, and analysis. You'll start with the key principles of computer vision and deep learning to build a solid foundation, before covering neural network architectures and understanding how they work rather than using them as a black box. Next, you'll explore architectures such as VGG, ResNet, Inception, R-CNN, SSD, YOLO, and MobileNet. As you advance, you'll learn to use visual search methods using transfer learning. You'll also cover advanced computer vision concepts such as semantic segmentation, image inpainting with GAN's, object tracking, video segmentation, and action recognition. Later, the book focuses on how machine learning and deep learning concepts can be used to perform tasks such as edge detection and face recognition. You'll then discover how to develop powerful neural network models on your PC and on various cloud platforms. Finally, you'll learn to perform model optimization methods to deploy models on edge devices for real-time inference. By the end of this book, you'll have a solid understanding of computer vision and be able to confidently develop models to automate tasks.
Table of Contents (18 chapters)
1
Section 1: Introduction to Computer Vision and Neural Networks
6
Section 2: Advanced Concepts of Computer Vision with TensorFlow
11
Section 3: Advanced Implementation of Computer Vision with TensorFlow
14
Section 4: TensorFlow Implementation at the Edge and on the Cloud

Summary

In this chapter, you learned how to develop and optimize a convolutional neural network model on the farthest edge of the network. At its core, a neural network requires lots of data to train, but in the end, it comes out with a model that is able to complete a task without human intervention. In the previous chapters, we learned about the necessary theory and implemented models, but we never did any practical exercises. In practice, a camera can be used for surveillance, to monitor machine performance, or to evaluate a surgical procedure. In each of these cases, embedded vision is used for real time on-device data processing, which requires a smaller and more efficient model to be deployed on edge devices.

In this chapter, you learned about the performance of various single-board computers and accelerators, thus enabling you to make an informed decision regarding what...