Book Image

The Data Science Workshop

By : Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare
Book Image

The Data Science Workshop

By: Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare

Overview of this book

You already know you want to learn data science, and a smarter way to learn data science is to learn by doing. The Data Science Workshop focuses on building up your practical skills so that you can understand how to develop simple machine learning models in Python or even build an advanced model for detecting potential bank frauds with effective modern data science. You'll learn from real examples that lead to real results. Throughout The Data Science Workshop, you'll take an engaging step-by-step approach to understanding data science. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend training a model using sci-kit learn. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Data Science Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your data science book. Fast-paced and direct, The Data Science Workshop is the ideal companion for data science beginners. You'll learn about machine learning algorithms like a data scientist, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead.
Table of Contents (18 chapters)


Scikit-learn (also referred to as sklearn) is another extremely popular package used by data scientists. The main purpose of sklearn is to provide APIs for processing data and training machine learning algorithms. But before moving ahead, we need to know what a model is.

What Is a Model?

A machine learning model learns patterns from data and creates a mathematical function to generate predictions. A supervised learning algorithm will try to find the relationship between a response variable and the given features.

Have a look at the following example.

A mathematical function can be represented as a function, ƒ(), that is applied to some input variables, X (which is composed of multiple features), and will calculate an output (or prediction), ŷ:

Figure 1.37: Function f(X)

The function, ƒ(), can be quite complex and have different numbers of parameters. If we take a linear regression (this will be presented in more detail...