Book Image

The Data Science Workshop

By : Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare
Book Image

The Data Science Workshop

By: Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare

Overview of this book

You already know you want to learn data science, and a smarter way to learn data science is to learn by doing. The Data Science Workshop focuses on building up your practical skills so that you can understand how to develop simple machine learning models in Python or even build an advanced model for detecting potential bank frauds with effective modern data science. You'll learn from real examples that lead to real results. Throughout The Data Science Workshop, you'll take an engaging step-by-step approach to understanding data science. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend training a model using sci-kit learn. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Data Science Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your data science book. Fast-paced and direct, The Data Science Workshop is the ideal companion for data science beginners. You'll learn about machine learning algorithms like a data scientist, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead.
Table of Contents (18 chapters)


This chapter provided you with an overview of what data science is in general. We also learned the different types of machine learning algorithms, including supervised and unsupervised, as well as regression and classification. We had a quick introduction to Python and how to manipulate the main data structures (lists and dictionaries) that will be used in this book.

Then we walked you through what a DataFrame is and how to create one by loading data from different file formats using the famous pandas package. Finally, we learned how to use the sklearn package to train a machine learning model and make predictions with it.

This was just a quick glimpse into the fascinating world of data science. In this book, you will learn much more and discover new techniques for handling data science projects from end to end.

The next chapter will show you how to perform a regression task on a real-world dataset.