Book Image

The Data Science Workshop

By : Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare
Book Image

The Data Science Workshop

By: Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare

Overview of this book

You already know you want to learn data science, and a smarter way to learn data science is to learn by doing. The Data Science Workshop focuses on building up your practical skills so that you can understand how to develop simple machine learning models in Python or even build an advanced model for detecting potential bank frauds with effective modern data science. You'll learn from real examples that lead to real results. Throughout The Data Science Workshop, you'll take an engaging step-by-step approach to understanding data science. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend training a model using sci-kit learn. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Data Science Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your data science book. Fast-paced and direct, The Data Science Workshop is the ideal companion for data science beginners. You'll learn about machine learning algorithms like a data scientist, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead.
Table of Contents (18 chapters)

Challenges of Imbalanced Datasets

As seen from the classifier example, one of the biggest challenges with imbalanced datasets is the bias toward the majority class, which ended up being 88% in the previous example. This will result in suboptimal results. However, what makes such cases even more challenging is the deceptive nature of results if the right metric is not used.

Let's take, for example, a dataset where the negative class is around 99% and the positive class is 1% (as in a use case where a rare disease has to be detected, for instance).

Have a look at the following code snippet:

Data set Size: 10,000 examples
Negative class : 9910
Positive Class : 90

Suppose we had a poor classifier that was capable of only predicting the negative class; we would get the following confusion matrix:

Figure 13.6: Confusion matrix of the poor classifier

From the confusion matrix, let's calculate the accuracy measures. Have a look at the following...