Book Image

The Data Science Workshop

By : Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare
Book Image

The Data Science Workshop

By: Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare

Overview of this book

You already know you want to learn data science, and a smarter way to learn data science is to learn by doing. The Data Science Workshop focuses on building up your practical skills so that you can understand how to develop simple machine learning models in Python or even build an advanced model for detecting potential bank frauds with effective modern data science. You'll learn from real examples that lead to real results. Throughout The Data Science Workshop, you'll take an engaging step-by-step approach to understanding data science. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend training a model using sci-kit learn. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Data Science Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your data science book. Fast-paced and direct, The Data Science Workshop is the ideal companion for data science beginners. You'll learn about machine learning algorithms like a data scientist, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead.
Table of Contents (18 chapters)

Maximum Depth

In the previous section, we learned how Random Forest builds multiple trees to make predictions. Increasing the number of trees does improve model performance but it usually doesn't help much to decrease the risk of overfitting. Our model in the previous example is still performing much better on the training set (data it has already seen) than on the testing set (unseen data).

So, we are not confident enough yet to say the model will perform well in production. There are different hyperparameters that can help to lower the risk of overfitting for Random Forest and one of them is called max_depth.

This hyperparameter defines the depth of the trees built by Random Forest. Basically, it tells Random Forest model, how many nodes (questions) it can create before making predictions. But how will that help to reduce overfitting, you may ask. Well, let's say you built a single tree and set the max_depth hyperparameter to 50. This would mean that there would...