Book Image

The Data Science Workshop

By : Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare
Book Image

The Data Science Workshop

By: Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare

Overview of this book

You already know you want to learn data science, and a smarter way to learn data science is to learn by doing. The Data Science Workshop focuses on building up your practical skills so that you can understand how to develop simple machine learning models in Python or even build an advanced model for detecting potential bank frauds with effective modern data science. You'll learn from real examples that lead to real results. Throughout The Data Science Workshop, you'll take an engaging step-by-step approach to understanding data science. You won't have to sit through any unnecessary theory. If you're short on time you can jump into a single exercise each day or spend an entire weekend training a model using sci-kit learn. It's your choice. Learning on your terms, you'll build up and reinforce key skills in a way that feels rewarding. Every physical print copy of The Data Science Workshop unlocks access to the interactive edition. With videos detailing all exercises and activities, you'll always have a guided solution. You can also benchmark yourself against assessments, track progress, and receive content updates. You'll even earn a secure credential that you can share and verify online upon completion. It's a premium learning experience that's included with your printed copy. To redeem, follow the instructions located at the start of your data science book. Fast-paced and direct, The Data Science Workshop is the ideal companion for data science beginners. You'll learn about machine learning algorithms like a data scientist, learning along the way. This process means that you'll find that your new skills stick, embedded as best practice. A solid foundation for the years ahead.
Table of Contents (18 chapters)

Standardizing Data

You've already learned a lot about the k-means algorithm, and we are close to the end of this chapter. In this final section, we will not talk about another hyperparameter (you've already been through the main ones) but a very important topic: data processing.

Fitting a k-means algorithm is extremely easy. The trickiest part is making sure the resulting clusters are meaningful for your project, and we have seen how we can tune some hyperparameters to ensure this. But handling input data is as important as all the steps you have learned about so far. If your dataset is not well prepared, even if you find the best hyperparameters, you will still get some bad results.

Let's have another look at our ATO dataset. In the previous section, Calculating the Distance to the Centroid, we found three different clusters, and they were mainly defined by the 'Average net tax' variable. It was as if k-means didn't take into account the second...