Book Image

Essential Statistics for Non-STEM Data Analysts

By : Rongpeng Li
Book Image

Essential Statistics for Non-STEM Data Analysts

By: Rongpeng Li

Overview of this book

Statistics remain the backbone of modern analysis tasks, helping you to interpret the results produced by data science pipelines. This book is a detailed guide covering the math and various statistical methods required for undertaking data science tasks. The book starts by showing you how to preprocess data and inspect distributions and correlations from a statistical perspective. You’ll then get to grips with the fundamentals of statistical analysis and apply its concepts to real-world datasets. As you advance, you’ll find out how statistical concepts emerge from different stages of data science pipelines, understand the summary of datasets in the language of statistics, and use it to build a solid foundation for robust data products such as explanatory models and predictive models. Once you’ve uncovered the working mechanism of data science algorithms, you’ll cover essential concepts for efficient data collection, cleaning, mining, visualization, and analysis. Finally, you’ll implement statistical methods in key machine learning tasks such as classification, regression, tree-based methods, and ensemble learning. By the end of this Essential Statistics for Non-STEM Data Analysts book, you’ll have learned how to build and present a self-contained, statistics-backed data product to meet your business goals.
Table of Contents (19 chapters)
1
Section 1: Getting Started with Statistics for Data Science
5
Section 2: Essentials of Statistical Analysis
10
Section 3: Statistics for Machine Learning
15
Section 4: Appendix

Understanding the common continuous probability distribution

In this section, you will see the three most important continuous distributions:

  • Uniform distribution
  • Exponential distribution
  • Gaussian/normal distribution

Let's look at each of these in detail.

Uniform distribution

Uniform distribution is an important uniform distribution. It is useful computationally because many other distributions can be simulated with uniform distribution. In earlier code examples, I used random.random() in the simulation of the Bernoulli distribution, which itself generates a uniform random variable in the range [0,1].

For a uniformly distributed random variable on [0,1], the mean is 0.5 and the variance is . This is a good number to remember for a data scientist role interview.

For a general uniform distribution, If the range is [a,b], the PDF reads as if x is in the range [a,b]. The mean and variance become and , respectively. If you remember calculus, check...