Book Image

Essential Statistics for Non-STEM Data Analysts

By : Rongpeng Li
Book Image

Essential Statistics for Non-STEM Data Analysts

By: Rongpeng Li

Overview of this book

Statistics remain the backbone of modern analysis tasks, helping you to interpret the results produced by data science pipelines. This book is a detailed guide covering the math and various statistical methods required for undertaking data science tasks. The book starts by showing you how to preprocess data and inspect distributions and correlations from a statistical perspective. You’ll then get to grips with the fundamentals of statistical analysis and apply its concepts to real-world datasets. As you advance, you’ll find out how statistical concepts emerge from different stages of data science pipelines, understand the summary of datasets in the language of statistics, and use it to build a solid foundation for robust data products such as explanatory models and predictive models. Once you’ve uncovered the working mechanism of data science algorithms, you’ll cover essential concepts for efficient data collection, cleaning, mining, visualization, and analysis. Finally, you’ll implement statistical methods in key machine learning tasks such as classification, regression, tree-based methods, and ensemble learning. By the end of this Essential Statistics for Non-STEM Data Analysts book, you’ll have learned how to build and present a self-contained, statistics-backed data product to meet your business goals.
Table of Contents (19 chapters)
1
Section 1: Getting Started with Statistics for Data Science
5
Section 2: Essentials of Statistical Analysis
10
Section 3: Statistics for Machine Learning
15
Section 4: Appendix

Making sense of confidence intervals and P-values from visual examples

P-values determine whether a research proposal will be funded, whether a publication will be accepted, or at least whether an experiment is interesting or not. To start with, let me give you some bullet points about P-values' properties:

  • The P-value is a magical probability, but it is not the probability that the null hypothesis will be accepted. Statisticians tend to search for supportive evidence for the alternative hypothesis because the null hypothesis is boring. Nobody wants to hear that there is nothing interesting going on.
  • The P-value is the probability of making mistakes if you reject the null hypothesis. If the P-value is very small, it means that you can safely reject the null hypothesis without worrying too much that you made mistakes because randomness tricked you. If the P-value is 1, it means that you have absolutely no reason to reject the null hypothesis, because what you get from...