Book Image

Hands-On Simulation Modeling with Python

By : Giuseppe Ciaburro
Book Image

Hands-On Simulation Modeling with Python

By: Giuseppe Ciaburro

Overview of this book

Simulation modeling helps you to create digital prototypes of physical models to analyze how they work and predict their performance in the real world. With this comprehensive guide, you'll understand various computational statistical simulations using Python. Starting with the fundamentals of simulation modeling, you'll understand concepts such as randomness and explore data generating processes, resampling methods, and bootstrapping techniques. You'll then cover key algorithms such as Monte Carlo simulations and Markov decision processes, which are used to develop numerical simulation models, and discover how they can be used to solve real-world problems. As you advance, you'll develop simulation models to help you get accurate results and enhance decision-making processes. Using optimization techniques, you'll learn to modify the performance of a model to improve results and make optimal use of resources. The book will guide you in creating a digital prototype using practical use cases for financial engineering, prototyping project management to improve planning, and simulating physical phenomena using neural networks. By the end of this book, you'll have learned how to construct and deploy simulation models of your own to overcome real-world challenges.
Table of Contents (16 chapters)
Section 1: Getting Started with Numerical Simulation
Section 2: Simulation Modeling Algorithms and Techniques
Section 3: Real-World Applications

Chapter 4: Exploring Monte Carlo Simulations

Monte Carlo simulation is used to reproduce and numerically solve a problem in which random variables are also involved, and whose solution by analytical methods is too complex or impossible. In addition, the use of simulation allows you to test the effects of changes in the input variables or in the output function more easily and with a high degree of detail. Starting from modeling the processes and generating random variables, simulations composed of multiple runs capable of obtaining an approximation of the probability of certain results are performed.

This method has assumed great importance in many scientific and engineering areas, above all for its ability to deal with complex problems that previously could only be solved through deterministic simplifications. It is mainly used in three distinct classes of problems: optimization, numerical integration, and the generation of probability functions. In this chapter, we will explore...