Book Image

Hands-On Simulation Modeling with Python

By : Giuseppe Ciaburro
Book Image

Hands-On Simulation Modeling with Python

By: Giuseppe Ciaburro

Overview of this book

Simulation modeling helps you to create digital prototypes of physical models to analyze how they work and predict their performance in the real world. With this comprehensive guide, you'll understand various computational statistical simulations using Python. Starting with the fundamentals of simulation modeling, you'll understand concepts such as randomness and explore data generating processes, resampling methods, and bootstrapping techniques. You'll then cover key algorithms such as Monte Carlo simulations and Markov decision processes, which are used to develop numerical simulation models, and discover how they can be used to solve real-world problems. As you advance, you'll develop simulation models to help you get accurate results and enhance decision-making processes. Using optimization techniques, you'll learn to modify the performance of a model to improve results and make optimal use of resources. The book will guide you in creating a digital prototype using practical use cases for financial engineering, prototyping project management to improve planning, and simulating physical phenomena using neural networks. By the end of this book, you'll have learned how to construct and deploy simulation models of your own to overcome real-world challenges.
Table of Contents (16 chapters)
Section 1: Getting Started with Numerical Simulation
Section 2: Simulation Modeling Algorithms and Techniques
Section 3: Real-World Applications


In this chapter, we learned how to use different numerical optimization techniques to improve the solutions offered by a simulation model. We started by introducing the basic concepts of numerical optimization, defining a minimization problem, and learning to distinguish between local and global minimums. We then moved on and looked at the optimization techniques based on gradient descent. We defined the mathematical formulation of the technique and gave it a geometric representation. Furthermore, we deepened our knowledge of the concepts surrounding the learning rate and trial and error. By doing this, we addressed a practical case in order to reinforce the concepts we learned by solving the problem of searching for the minimum of a quadratic function.

Subsequently, we learned how to use the Newton-Raphson method to search for the roots of a function and then how to exploit the same methodology for numerical optimization. We also analyzed a practical case for this technology...