Book Image

Python Algorithmic Trading Cookbook

By : Pushpak Dagade
Book Image

Python Algorithmic Trading Cookbook

By: Pushpak Dagade

Overview of this book

If you want to find out how you can build a solid foundation in algorithmic trading using Python, this cookbook is here to help. Starting by setting up the Python environment for trading and connectivity with brokers, you’ll then learn the important aspects of financial markets. As you progress, you’ll learn to fetch financial instruments, query and calculate various types of candles and historical data, and finally, compute and plot technical indicators. Next, you’ll learn how to place various types of orders, such as regular, bracket, and cover orders, and understand their state transitions. Later chapters will cover backtesting, paper trading, and finally real trading for the algorithmic strategies that you've created. You’ll even understand how to automate trading and find the right strategy for making effective decisions that would otherwise be impossible for human traders. By the end of this book, you’ll be able to use Python libraries to conduct key tasks in the algorithmic trading ecosystem. Note: For demonstration, we're using Zerodha, an Indian Stock Market broker. If you're not an Indian resident, you won't be able to use Zerodha and therefore will not be able to test the examples directly. However, you can take inspiration from the book and apply the concepts across your preferred stock market broker of choice.
Table of Contents (16 chapters)

Creating a pandas.DataFrame object

Now that we are done with handling date and time, let's move on to handling time series data. The pandas library has a pandas.DataFrame class, which is useful for handling and manipulating such data. This recipe starts by creating these objects.

How to do it...

Execute the following steps for this recipe:

  1. Import the necessary modules from the Python standard library:
>>> from datetime import datetime
>>> import pandas
  1. Create a sample time-series data as a list of dictionary objects. Assign it to time_series data:
>>> time_series_data = \
[{'date': datetime.datetime(2019, 11, 13, 9, 0),
'open': 71.8075, 'high': 71.845, 'low': 71.7775,
'close': 71.7925, 'volume': 219512},
{'date': datetime.datetime(2019, 11, 13, 9, 15),
'open': 71.7925, 'high': 71.8, 'low': 71.78,
'close': 71.7925, 'volume&apos...