Book Image

Hands-On Python Natural Language Processing

By : Aman Kedia, Mayank Rasu
4 (1)
Book Image

Hands-On Python Natural Language Processing

4 (1)
By: Aman Kedia, Mayank Rasu

Overview of this book

Natural Language Processing (NLP) is the subfield in computational linguistics that enables computers to understand, process, and analyze text. This book caters to the unmet demand for hands-on training of NLP concepts and provides exposure to real-world applications along with a solid theoretical grounding. This book starts by introducing you to the field of NLP and its applications, along with the modern Python libraries that you'll use to build your NLP-powered apps. With the help of practical examples, you’ll learn how to build reasonably sophisticated NLP applications, and cover various methodologies and challenges in deploying NLP applications in the real world. You'll cover key NLP tasks such as text classification, semantic embedding, sentiment analysis, machine translation, and developing a chatbot using machine learning and deep learning techniques. The book will also help you discover how machine learning techniques play a vital role in making your linguistic apps smart. Every chapter is accompanied by examples of real-world applications to help you build impressive NLP applications of your own. By the end of this NLP book, you’ll be able to work with language data, use machine learning to identify patterns in text, and get acquainted with the advancements in NLP.
Table of Contents (16 chapters)
1
Section 1: Introduction
4
Section 2: Natural Language Representation and Mathematics
9
Section 3: NLP and Learning

The SVM algorithm

SVM is a supervised ML algorithm that attempts to classify data within a dataset by finding the optimal hyperplane that best segregates the classes. Each data point in the dataset can be considered a vector in an N-dimensional plane, with each dimension representing a feature of the data. SVM identifies the frontier data points (or points closest to the opposing class), also known as support vectors, and then attempts to find the boundary (also known as the hyperplane in the N-dimensional space) that is the farthest from the support vector of each class.

Say we have a fruit basket with two types of fruits in it and we want to create an algorithm that segregates them. We only have information about two features of the fruits; that is, their weight and radius. Therefore, we can abstract this problem as a linear algebra problem, with each fruit representing a vector in a two-dimensional space, as shown in the following diagram. In order to segregate the two types of fruit...