Book Image

Modern Computer Vision with PyTorch

By : V Kishore Ayyadevara, Yeshwanth Reddy
Book Image

Modern Computer Vision with PyTorch

By: V Kishore Ayyadevara, Yeshwanth Reddy

Overview of this book

Deep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets. You’ll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You’ll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you’ll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You’ll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud. By the end of this book, you’ll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently.
Table of Contents (25 chapters)
1
Section 1 - Fundamentals of Deep Learning for Computer Vision
5
Section 2 - Object Classification and Detection
13
Section 3 - Image Manipulation
17
Section 4 - Combining Computer Vision with Other Techniques

Implementing Q-learning

In the previous section, we manually calculated the state-action values for all combinations. Technically, now that we have calculated the various state-action values we need, we can now identify the action that will be taken in every state. However, in the case of a more complex scenario for example, when playing video games it gets tricky to fetch state information. OpenAI's Gym environment comes in handy in this scenario. It contains a pre-defined environment for the game we're playing. Here, it fetches the next state information, given an action that's been taken in the current state. So far, we have considered the scenario of choosing the most optimal path. However, there can be scenarios where we are stuck at the local minima.

In this section, we will learn about Q-learning, which helps with calculating the value associated with the action in a state, as well as about leveraging the Gym environment so that we can play various...