Book Image

The Data Wrangling Workshop - Second Edition

By : Brian Lipp, Shubhadeep Roychowdhury, Dr. Tirthajyoti Sarkar
Book Image

The Data Wrangling Workshop - Second Edition

By: Brian Lipp, Shubhadeep Roychowdhury, Dr. Tirthajyoti Sarkar

Overview of this book

While a huge amount of data is readily available to us, it is not useful in its raw form. For data to be meaningful, it must be curated and refined. If you’re a beginner, then The Data Wrangling Workshop will help to break down the process for you. You’ll start with the basics and build your knowledge, progressing from the core aspects behind data wrangling, to using the most popular tools and techniques. This book starts by showing you how to work with data structures using Python. Through examples and activities, you’ll understand why you should stay away from traditional methods of data cleaning used in other languages and take advantage of the specialized pre-built routines in Python. Later, you’ll learn how to use the same Python backend to extract and transform data from an array of sources, including the internet, large database vaults, and Excel financial tables. To help you prepare for more challenging scenarios, the book teaches you how to handle missing or incorrect data, and reformat it based on the requirements from your downstream analytics tool. By the end of this book, you will have developed a solid understanding of how to perform data wrangling with Python, and learned several techniques and best practices to extract, clean, transform, and format your data efficiently, from a diverse array of sources.
Table of Contents (11 chapters)

Concatenating, Merging, and Joining

Merging and joining tables or datasets are highly common operations in the day-to-day job of a data wrangling professional. These operations are akin to the JOIN query in SQL for relational database tables. Often, the key data is present in multiple tables, and those records need to be brought into one combined table that matches on that common key. This is an extremely common operation in any type of sales or transactional data, and therefore must be mastered by a data wrangler. The pandas library offers nice and intuitive built-in methods to perform various types of JOIN queries involving multiple DataFrame objects.

Exercise 4.07: Concatenation in Datasets

In this exercise, we will concatenate DataFrames along various axes (rows or columns).


The superstore dataset file can be found here:

This is a very useful operation as it allows you to grow a DataFrame as the new data comes in or new feature...