Book Image

Machine Learning for Algorithmic Trading - Second Edition

By : Stefan Jansen
Book Image

Machine Learning for Algorithmic Trading - Second Edition

By: Stefan Jansen

Overview of this book

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.
Table of Contents (27 chapters)
24
References
25
Index

Long-short signals for Japanese stocks

In Chapter 9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage, we used cointegration tests to identify pairs of stocks with a long-term equilibrium relationship in the form of a common trend to which their prices revert.

In this chapter, we will use the predictions of a machine learning model to identify assets that are likely to go up or down so we can enter market-neutral long and short positions, accordingly. The approach is similar to our initial trading strategy that used linear regression in Chapter 7, Linear Models – From Risk Factors to Return Forecasts, and Chapter 8, The ML4T Workflow – From Model to Strategy Backtesting.

Instead of the scikit-learn random forest implementation, we will use the LightGBM package, which has been primarily designed for gradient boosting. One of several advantages is LightGBM's ability to efficiently encode categorical variables as numeric features rather...