Book Image

Machine Learning for Algorithmic Trading - Second Edition

By : Stefan Jansen
Book Image

Machine Learning for Algorithmic Trading - Second Edition

By: Stefan Jansen

Overview of this book

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.
Table of Contents (27 chapters)
24
References
25
Index

Getting started – adaptive boosting

Like bagging, boosting is an ensemble learning algorithm that combines base learners (typically decision trees) into an ensemble. Boosting was initially developed for classification problems, but can also be used for regression, and has been called one of the most potent learning ideas introduced in the last 20 years (Hastie, Tibshirani, and Friedman 2009). Like bagging, it is a general method or metamethod that can be applied to many statistical learning methods.

The motivation behind boosting was to find a method that combines the outputs of many weak models, where "weak" means they perform only slightly better than a random guess, into a highly accurate, boosted joint prediction (Schapire and Freund 2012).

In general, boosting learns an additive hypothesis, HM, of a form similar to linear regression. However, each of the m= 1,..., M elements of the summation is a weak base learner, called ht, which itself requires...