Book Image

Machine Learning for Algorithmic Trading - Second Edition

By : Stefan Jansen
Book Image

Machine Learning for Algorithmic Trading - Second Edition

By: Stefan Jansen

Overview of this book

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.
Table of Contents (27 chapters)
24
References
25
Index

Popular deep learning libraries

Currently, the most popular DL libraries are TensorFlow (supported by Google), Keras (led by Francois Chollet, now at Google), and PyTorch (supported by Facebook). Development is very active with PyTorch at version 1.4 and TensorFlow at 2.2 as of March 2020. TensorFlow 2.0 adopted Keras as its main interface, effectively combining both libraries into one.

All libraries provide the design choices, regularization methods, and backprop optimizations we discussed previously in this chapter. They also facilitate fast training on one or several graphics processing units (GPUs). The libraries differ slightly in their focus with TensorFlow originally designed for deployment in production and prevalent in the industry, while PyTorch has been popular among academic researchers; however, the interfaces are gradually converging.

We will illustrate the use of TensorFlow and PyTorch using the same network architecture and dataset as in the previous section...