Book Image

Machine Learning for Algorithmic Trading - Second Edition

By : Stefan Jansen
Book Image

Machine Learning for Algorithmic Trading - Second Edition

By: Stefan Jansen

Overview of this book

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.
Table of Contents (27 chapters)
24
References
25
Index

CNNs for time-series data – predicting returns

CNNs were originally developed to process image data and have achieved superhuman performance on various computer vision tasks. As discussed in the first section, time-series data has a grid-like structure similar to that of images, and CNNs have been successfully applied to one-, two- and three-dimensional representations of temporal data.

The application of CNNs to time series will most likely bear fruit if the data meets the model's key assumption that local patterns or relationships help predict the outcome. In the time-series context, local patterns could be autocorrelation or similar non-linear relationships at relevant intervals. Along the second and third dimensions, local patterns imply systematic relationships among different components of a multivariate series or among these series for different tickers. Since locality matters, it is important that the data is organized accordingly, in contrast to feed-forward...