Book Image

Hands-On Gradient Boosting with XGBoost and scikit-learn

By : Corey Wade
Book Image

Hands-On Gradient Boosting with XGBoost and scikit-learn

By: Corey Wade

Overview of this book

XGBoost is an industry-proven, open-source software library that provides a gradient boosting framework for scaling billions of data points quickly and efficiently. The book introduces machine learning and XGBoost in scikit-learn before building up to the theory behind gradient boosting. You’ll cover decision trees and analyze bagging in the machine learning context, learning hyperparameters that extend to XGBoost along the way. You’ll build gradient boosting models from scratch and extend gradient boosting to big data while recognizing speed limitations using timers. Details in XGBoost are explored with a focus on speed enhancements and deriving parameters mathematically. With the help of detailed case studies, you’ll practice building and fine-tuning XGBoost classifiers and regressors using scikit-learn and the original Python API. You'll leverage XGBoost hyperparameters to improve scores, correct missing values, scale imbalanced datasets, and fine-tune alternative base learners. Finally, you'll apply advanced XGBoost techniques like building non-correlated ensembles, stacking models, and preparing models for industry deployment using sparse matrices, customized transformers, and pipelines. By the end of the book, you’ll be able to build high-performing machine learning models using XGBoost with minimal errors and maximum speed.
Table of Contents (15 chapters)
Section 1: Bagging and Boosting
Section 2: XGBoost
Section 3: Advanced XGBoost

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "The AdaBoostRegressor and AdaBoostClassifier algorithms may be downloaded from the sklearn.ensemble library and fit to any training set."

A block of code is set as follows:

X_bikes = df_bikes.iloc[:,:-1]
y_bikes = df_bikes.iloc[:,-1]
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X_bikes, y_bikes, random_state=2)

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

Stopping. Best iteration:
[1]	validation_0-error:0.118421
Accuracy: 88.16%

Tips or important notes

Appear like this.