Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying The Machine Learning Workshop
  • Table Of Contents Toc
The Machine Learning Workshop

The Machine Learning Workshop - Second Edition

By : Hyatt Saleh
4.3 (6)
close
close
The Machine Learning Workshop

The Machine Learning Workshop

4.3 (6)
By: Hyatt Saleh

Overview of this book

Machine learning algorithms are an integral part of almost all modern applications. To make the learning process faster and more accurate, you need a tool flexible and powerful enough to help you build machine learning algorithms quickly and easily. With The Machine Learning Workshop, you'll master the scikit-learn library and become proficient in developing clever machine learning algorithms. The Machine Learning Workshop begins by demonstrating how unsupervised and supervised learning algorithms work by analyzing a real-world dataset of wholesale customers. Once you've got to grips with the basics, you'll develop an artificial neural network using scikit-learn and then improve its performance by fine-tuning hyperparameters. Towards the end of the workshop, you'll study the dataset of a bank's marketing activities and build machine learning models that can list clients who are likely to subscribe to a term deposit. You'll also learn how to compare these models and select the optimal one. By the end of The Machine Learning Workshop, you'll not only have learned the difference between supervised and unsupervised models and their applications in the real world, but you'll also have developed the skills required to get started with programming your very own machine learning algorithms.
Table of Contents (8 chapters)
close
close
Preface

Scikit-Learn

Created in 2007 by David Cournapeau as part of a Google Summer of Code project, scikit-learn is an open source Python library made to facilitate the process of building models based on built-in ML and statistical algorithms, without the need for hardcoding. The main reasons for its popular use are its complete documentation, its easy-to-use API, and the many collaborators who work every day to improve the library.

Note

You can find the documentation for scikit-learn at http://scikit-learn.org.

Scikit-learn is mainly used to model data, and not as much to manipulate or summarize data. It offers its users an easy-to-use, uniform API to apply different models with little learning effort, and no real knowledge of the math behind it is required.

Note

Some of the math topics that you need to know about to understand the models are linear algebra, probability theory, and multivariate calculus. For more information on these models, visit https://towardsdatascience...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
The Machine Learning Workshop
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon