Book Image

Artificial Intelligence with Python - Second Edition

By : Prateek Joshi
Book Image

Artificial Intelligence with Python - Second Edition

By: Prateek Joshi

Overview of this book

Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques.
Table of Contents (26 chapters)
24
Other Books You May Enjoy
25
Index

Building an intelligent agent

There are many ways to impart intelligence to an agent. The most commonly used techniques include machine learning, stored knowledge, rules, and so on. In this section, we will focus on machine learning. In this method, the way we impart intelligence to an agent is through data and training.

Let's see how an intelligent agent interacts with the environment:

Figure 8: An intelligent agent interaction with its environment

With machine learning, sometimes we want to program our machines to use labeled data to solve a given problem. By going through the data and the associated labels, the machine learns how to extract patterns and relationships.

In the preceding example, the intelligent agent depends on the learning model to run the inference engine. Once the sensor perceives the input, it sends it to the feature extraction block. Once the relevant features are extracted, the trained inference engine performs a prediction based...