Book Image

Artificial Intelligence with Python - Second Edition

By : Alberto Artasanchez, Prateek Joshi
Book Image

Artificial Intelligence with Python - Second Edition

By: Alberto Artasanchez, Prateek Joshi

Overview of this book

Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques.
Table of Contents (26 chapters)
24
Other Books You May Enjoy
25
Index

Building an 8-puzzle solver

The 8-puzzle is a variant of the 15-puzzle. You can check it out at https://en.wikipedia.org/wiki/15_puzzle. You will be presented with a randomized grid and your goal is to get it back to the original ordered configuration. You can play the game to get familiar with it at http://mypuzzle.org/sliding.

We will use an A* algorithm to solve this problem. It is an algorithm that's used to find paths to the solution in a graph. This algorithm is a combination of Dijkstra's algorithm and a greedy best-first search. Instead of blindly guessing where to go next, the A* algorithm picks the one that looks the most promising. At each node, the list of all possibilities is generated and then the one with the minimal cost required to reach the goal is picked.

Let's see how to define the cost function. At each node, the cost needs to be computed. This cost is basically the sum of two costs – the first cost is the cost of getting to the...