Book Image

Artificial Intelligence with Python - Second Edition

By : Alberto Artasanchez, Prateek Joshi
Book Image

Artificial Intelligence with Python - Second Edition

By: Alberto Artasanchez, Prateek Joshi

Overview of this book

Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques.
Table of Contents (26 chapters)
24
Other Books You May Enjoy
25
Index

Visualizing audio signals

Let's see how to visualize an audio signal. We will learn how to read an audio signal from a file and work with it. This will help us understand how an audio signal is structured. When audio files are recorded using a microphone, they are sampling the actual audio signals and storing the digitized versions. The real audio signals are continuous valued waves, which means we cannot store them as they are. We need to sample the signal at a certain frequency and convert it into discrete numerical form.

Most commonly, speech signals are sampled at 44,100 Hz. This means that each second of the speech signal is broken down into 44,100 parts and the values at each of these timestamps is stored in an output file. We save the value of the audio signal every 1/44,100 seconds. In this case, we say that the sampling frequency of the audio signal is 44,100 Hz. By choosing a high sampling frequency, it will appear that the audio signal is continuous when humans...