Book Image

Artificial Intelligence with Python - Second Edition

By : Alberto Artasanchez, Prateek Joshi
Book Image

Artificial Intelligence with Python - Second Edition

By: Alberto Artasanchez, Prateek Joshi

Overview of this book

Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques.
Table of Contents (26 chapters)
24
Other Books You May Enjoy
25
Index

Generating data using Hidden Markov Models

A Hidden Markov Model (HMM) is a powerful analysis technique for analyzing sequential data. It assumes that the system being modeled is a Markov process with hidden states. This means that the underlying system can be one among a set of possible states.

It goes through a sequence of state transitions, thereby producing a sequence of outputs. We can only observe the outputs but not the states. Hence these states are hidden from us. Our goal is to model the data so that we can infer the state transitions of unknown data.

In order to understand HMMs, let's consider a version of the traveling salesman problem (TSP). In this example, a salesman must travel between the following three cities for his job — London, Barcelona, and New York. His goal is to minimize the traveling time so that he can be the most efficient. Considering his work commitments and schedule, we have a set of probabilities that dictate the chances of ...