Book Image

Artificial Intelligence with Python - Second Edition

By : Prateek Joshi
Book Image

Artificial Intelligence with Python - Second Edition

By: Prateek Joshi

Overview of this book

Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques.
Table of Contents (26 chapters)
Other Books You May Enjoy

What are random forests and extremely random forests?

A random forest is an instance of ensemble learning where individual models are constructed using decision trees. This ensemble of decision trees is then used to predict the output value. We use a random subset of training data to construct each decision tree.

This will ensure diversity among various decision trees. In the first section, we discussed that one of the most important attributes when building good ensemble learning models is that we ensure that there is diversity among individual models.

One of the advantages of random forests is that they do not overfit. Overfitting is a frequent problem in machine learning. Overfitting is more likely with nonparametric and nonlinear models that have more flexibility when learning a target function. By constructing a diverse set of decision trees using various random subsets, we ensure that the model does not overfit the training data. During the construction of the...