Book Image

Artificial Intelligence with Python - Second Edition

By : Prateek Joshi
Book Image

Artificial Intelligence with Python - Second Edition

By: Prateek Joshi

Overview of this book

Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques.
Table of Contents (26 chapters)
Other Books You May Enjoy

Finding optimal training parameters using grid search

When working with classifiers, it is not always possible to know what the best parameters are to use. It is not efficient to use brute force by checking for all possible combinations manually. This is where grid search becomes useful. Grid search allows us to specify a range of values and the classifier will automatically run various configurations to figure out the best combination of parameters. Let's see how to do it.

Create a new Python file and import the following packages:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
from sklearn import grid_search
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

from utilities import visualize_classifier

We will use the data available in data_random_forests.txt for analysis: