Book Image

The Deep Learning Workshop

By : Mirza Rahim Baig, Thomas V. Joseph, Nipun Sadvilkar, Mohan Kumar Silaparasetty, Anthony So
Book Image

The Deep Learning Workshop

By: Mirza Rahim Baig, Thomas V. Joseph, Nipun Sadvilkar, Mohan Kumar Silaparasetty, Anthony So

Overview of this book

Are you fascinated by how deep learning powers intelligent applications such as self-driving cars, virtual assistants, facial recognition devices, and chatbots to process data and solve complex problems? Whether you are familiar with machine learning or are new to this domain, The Deep Learning Workshop will make it easy for you to understand deep learning with the help of interesting examples and exercises throughout. The book starts by highlighting the relationship between deep learning, machine learning, and artificial intelligence and helps you get comfortable with the TensorFlow 2.0 programming structure using hands-on exercises. You’ll understand neural networks, the structure of a perceptron, and how to use TensorFlow to create and train models. The book will then let you explore the fundamentals of computer vision by performing image recognition exercises with convolutional neural networks (CNNs) using Keras. As you advance, you’ll be able to make your model more powerful by implementing text embedding and sequencing the data using popular deep learning solutions. Finally, you’ll get to grips with bidirectional recurrent neural networks (RNNs) and build generative adversarial networks (GANs) for image synthesis. By the end of this deep learning book, you’ll have learned the skills essential for building deep learning models with TensorFlow and Keras.
Table of Contents (9 chapters)
Preface

Activity 2.01: Build a Multilayer Neural Network to Classify Sonar Signals

In this activity, we will use the Sonar dataset (https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)), which has patterns obtained by bouncing sonar signals off a metal cylinder at various angles and under various conditions. You will build a neural network-based classifier to classify between sonar signals bounced off a metal cylinder (the Mine class), and those bounced off a roughly cylindrical rock (the Rock class). We recommend using the Keras API to make your code more readable and modular, which will allow you to experiment with different parameters easily:

Note

You can download the sonar dataset from this link https://packt.live/31Xtm9M.

  1. The first step is to understand the data so that you can figure out whether this is a binary classification problem or a multiclass classification problem.
  2. Once you understand the data and the type of classification that...