Book Image

ElasticSearch Server

Book Image

ElasticSearch Server

Overview of this book

ElasticSearch is an open source search server built on Apache Lucene. It was built to provide a scalable search solution with built-in support for near real-time search and multi-tenancy.Jumping into the world of ElasticSearch by setting up your own custom cluster, this book will show you how to create a fast, scalable, and flexible search solution. By learning the ins-and-outs of data indexing and analysis, "ElasticSearch Server" will start you on your journey to mastering the powerful capabilities of ElasticSearch. With practical chapters covering how to search data, extend your search, and go deep into cluster administration and search analysis, this book is perfect for those new and experienced with search servers.In "ElasticSearch Server" you will learn how to revolutionize your website or application with faster, more accurate, and flexible search functionality. Starting with chapters on setting up your own ElasticSearch cluster and searching and extending your search parameters you will quickly be able to create a fast, scalable, and completely custom search solution.Building on your knowledge further you will learn about ElasticSearch's query API and become confident using powerful filtering and faceting capabilities. You will develop practical knowledge on how to make use of ElasticSearch's near real-time capabilities and support for multi-tenancy.Your journey then concludes with chapters that help you monitor and tune your ElasticSearch cluster as well as advanced topics such as shard allocation, gateway configuration, and the discovery module.
Table of Contents (17 chapters)
ElasticSearch Server
Credits
About the Authors
Acknowledgement
Acknowledgement
About the Reviewers
www.PacktPub.com
Preface
Index

Influencing scores with query boosts


In the previous chapter, we learned how to check why the search returns a given document and what factors had influence on its position in the result list. When an application grows, the need for improving the quality of search also increases—so-called search experience. We need to gain knowledge about what is more important to the user and to see how users use the search functionality. This leads to various conclusions; for example, we see that some parts of the documents are more important than the others or that particular queries emphasize one field at the cost of others. This is where boosting can be used. In the previous chapters, we've seen some information about boosting. In this chapter, we'll summarize this knowledge and we will show how to use it in practice.

What is boost?

Boost is an additional value used in the process of scoring. We can apply this value to the following:

  • Query: This is a way to inform the search engine that the given query...