Book Image

ElasticSearch Server

Book Image

ElasticSearch Server

Overview of this book

ElasticSearch is an open source search server built on Apache Lucene. It was built to provide a scalable search solution with built-in support for near real-time search and multi-tenancy.Jumping into the world of ElasticSearch by setting up your own custom cluster, this book will show you how to create a fast, scalable, and flexible search solution. By learning the ins-and-outs of data indexing and analysis, "ElasticSearch Server" will start you on your journey to mastering the powerful capabilities of ElasticSearch. With practical chapters covering how to search data, extend your search, and go deep into cluster administration and search analysis, this book is perfect for those new and experienced with search servers.In "ElasticSearch Server" you will learn how to revolutionize your website or application with faster, more accurate, and flexible search functionality. Starting with chapters on setting up your own ElasticSearch cluster and searching and extending your search parameters you will quickly be able to create a fast, scalable, and completely custom search solution.Building on your knowledge further you will learn about ElasticSearch's query API and become confident using powerful filtering and faceting capabilities. You will develop practical knowledge on how to make use of ElasticSearch's near real-time capabilities and support for multi-tenancy.Your journey then concludes with chapters that help you monitor and tune your ElasticSearch cluster as well as advanced topics such as shard allocation, gateway configuration, and the discovery module.
Table of Contents (17 chapters)
ElasticSearch Server
Credits
About the Authors
Acknowledgement
Acknowledgement
About the Reviewers
www.PacktPub.com
Preface
Index

Faceting


ElasticSearch is a full text search engine that aims to provide search results on the basis of our queries. However, sometimes we would like to get more. For example, we would like to get aggregated data that is calculated on the result set we get, such as the number of documents priced between 100 and 200 dollars or the most common tags in the results documents. In order to do that, ElasticSearch provides a faceting module that is responsible for providing such data. In this chapter we will discuss different faceting methods provided by ElasticSearch.

Document structure

For the purpose of discussing faceting, we'll use a very simple index structure for our documents. It will contain the identifier of the document, document date, a multivalued field that can hold words describing our document (the tags field), and a field holding numeric information (the total field). Our mappings could look like this:

{
 "mappings" : {
  "doc" : {
   "properties" : {                
    "id" : { ...