Book Image

NumPy Cookbook

Book Image

NumPy Cookbook

Overview of this book

Today's world of science and technology is all about speed and flexibility. When it comes to scientific computing, NumPy is on the top of the list. NumPy will give you both speed and high productivity. "NumPy Cookbook" will teach you all about NumPy, a leading scientific computing library. NumPy replaces a lot of the functionality of Matlab and Mathematica, but in contrast to those products, it is free and open source. "Numpy Cookbook" will teach you to write readable, efficient, and fast code that is as close to the language of Mathematics as much as possible with the cutting edge open source NumPy software library. You will learn about installing and using NumPy and related concepts. At the end of the book, we will explore related scientific computing projects. This book will give you a solid foundation in NumPy arrays and universal functions. You will also learn about plotting with Matplotlib and the related SciPy project through examples. "NumPy Cookbook" will help you to be productive with NumPy and write clean and fast code.
Table of Contents (17 chapters)
NumPy Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Broadcasting arrays


Without knowing it, you might have broadcasted arrays. In a nutshell, NumPy tries to perform an operation even though the operands do not have the same shape. In this recipe, we will multiply an array and a scalar. The scalar is "extended" to the shape of the array operand and then the multiplication is performed. We will download an audio file and make a new version that is quieter.

How to do it...

Let's start by reading a WAV file:

  1. Reading a WAV file.

    We will use a standard Python code to download an audio file of Austin Powers called "Smashing, baby". SciPy has a wavfile module, which allows you to load sound data or generate WAV files. If SciPy is installed, then we should have this module already. The read function returns a data array and sample rate. In this example, we only care about the data:

    sample_rate, data = scipy.io.wavfile.read(WAV_FILE)
  2. Plot the original WAV data.

    Plot the original WAV data with Matplotlib. Give the subplot the title Original.

    matplotlib.pyplot...