Book Image

OpenGL 4 Shading Language Cookbook - Second Edition

By : David Wolff
Book Image

OpenGL 4 Shading Language Cookbook - Second Edition

By: David Wolff

Overview of this book

OpenGL Shading Language (GLSL) is a programming language used for customizing parts of the OpenGL graphics pipeline that were formerly fixed-function, and are executed directly on the GPU. It provides programmers with unprecedented flexibility for implementing effects and optimizations utilizing the power of modern GPUs. With Version 4, the language has been further refined to provide programmers with greater power and flexibility, with new stages such as tessellation and compute. OpenGL 4 Shading Language Cookbook provides easy-to-follow examples that first walk you through the theory and background behind each technique, and then go on to provide and explain the GLSL and OpenGL code needed to implement it. Beginner level through to advanced techniques are presented including topics such as texturing, screen-space techniques, lighting, shading, tessellation shaders, geometry shaders, compute shaders, and shadows. OpenGL Shading Language 4 Cookbook is a practical guide that takes you from the fundamentals of programming with modern GLSL and OpenGL, through to advanced techniques. The recipes build upon each other and take you quickly from novice to advanced level code. You'll see essential lighting and shading techniques; examples that demonstrate how to make use of textures for a wide variety of effects and as part of other techniques; examples of screen-space techniques including HDR rendering, bloom, and blur; shadowing techniques; tessellation, geometry, and compute shaders; how to use noise effectively; and animation with particle systems. OpenGL Shading Language 4 Cookbook provides examples of modern shading techniques that can be used as a starting point for programmers to expand upon to produce modern, interactive, 3D computer graphics applications.
Table of Contents (17 chapters)
OpenGL 4 Shading Language Cookbook Second Edition
About the Author
About the Reviewers

Using per-fragment shading for improved realism

When the shading equation is evaluated within the vertex shader (as we have done in previous recipes), we end up with a color associated with each vertex. That color is then interpolated across the face, and the fragment shader assigns that interpolated color to the output fragment. As mentioned previously (the Implementing flat shading recipe in Chapter 2, The Basics of GLSL Shaders), this technique is often called Gouraud shading. Gouraud shading (like all shading techniques) is an approximation, and can lead to some less than desirable results when; for example, the reflection characteristics at the vertices have little resemblance to those in the center of the polygon. For example, a bright specular highlight may reside in the center of a polygon, but not at its vertices. Simply evaluating the shading equation at the vertices would prevent the specular highlight from appearing in the rendered result. Other undesirable artifacts, such as...