Book Image

OpenGL 4 Shading Language Cookbook - Second Edition

By : David Wolff, David A Wolff
Book Image

OpenGL 4 Shading Language Cookbook - Second Edition

By: David Wolff, David A Wolff

Overview of this book

OpenGL Shading Language (GLSL) is a programming language used for customizing parts of the OpenGL graphics pipeline that were formerly fixed-function, and are executed directly on the GPU. It provides programmers with unprecedented flexibility for implementing effects and optimizations utilizing the power of modern GPUs. With Version 4, the language has been further refined to provide programmers with greater power and flexibility, with new stages such as tessellation and compute. OpenGL 4 Shading Language Cookbook provides easy-to-follow examples that first walk you through the theory and background behind each technique, and then go on to provide and explain the GLSL and OpenGL code needed to implement it. Beginner level through to advanced techniques are presented including topics such as texturing, screen-space techniques, lighting, shading, tessellation shaders, geometry shaders, compute shaders, and shadows. OpenGL Shading Language 4 Cookbook is a practical guide that takes you from the fundamentals of programming with modern GLSL and OpenGL, through to advanced techniques. The recipes build upon each other and take you quickly from novice to advanced level code. You'll see essential lighting and shading techniques; examples that demonstrate how to make use of textures for a wide variety of effects and as part of other techniques; examples of screen-space techniques including HDR rendering, bloom, and blur; shadowing techniques; tessellation, geometry, and compute shaders; how to use noise effectively; and animation with particle systems. OpenGL Shading Language 4 Cookbook provides examples of modern shading techniques that can be used as a starting point for programmers to expand upon to produce modern, interactive, 3D computer graphics applications.
Table of Contents (17 chapters)
OpenGL 4 Shading Language Cookbook Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Using alpha maps to discard pixels


To create the effect of an object that has holes, we could use a texture with an appropriate alpha channel that contains information about the transparent parts of the object. However, that requires us to make sure to make the depth buffer read-only, and render all of our polygons from back to front in order to avoid blending problems. We would need to sort our polygons based on the camera position and then render them in the correct order. What a pain!

With GLSL shaders, we can avoid all of this by using the discard keyword to completely discard fragments when the alpha value of the texture map is below a certain value. By completely discarding the fragments, there's no need to modify the depth buffer because when discarded, they aren't evaluated against the depth buffer at all. We don't need to depth-sort our polygons because there is no blending.

The following image on the right shows the teapot with fragments discarded based upon the texture on the left...