Book Image

Android NDK Game Development Cookbook

Book Image

Android NDK Game Development Cookbook

Overview of this book

Android NDK is used for multimedia applications which require direct access to a system's resources. Android NDK is also the key for portability, which in turn provides a reasonably comfortable development and debugging process using familiar tools such as GCC and Clang toolchains. If your wish to build Android games using this amazing framework, then this book is a must-have.This book provides you with a number of clear step-by-step recipes which will help you to start developing mobile games with Android NDK and boost your productivity debugging them on your computer. This book will also provide you with new ways of working as well as some useful tips and tricks that will demonstrably increase your development speed and efficiency.This book will take you through a number of easy-to-follow recipes that will help you to take advantage of the Android NDK as well as some popular C++ libraries. It presents Android application development in C++ and shows you how to create a complete gaming application. You will learn how to write portable multithreaded C++ code, use HTTP networking, play audio files, use OpenGL ES, to render high-quality text, and how to recognize user gestures on multi-touch devices. If you want to leverage your C++ skills in mobile development and add performance to your Android applications, then this is the book for you.
Table of Contents (16 chapters)
Android NDK Game Development Cookbook
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

Implementing file writers


Quite frequently, our application might want to store some of its data on the disk. Another typical use case we have already encountered is the downloading of some file from the network into a memory buffer. Here, we implement two variations of the iOStream interface for the ordinary and in-memory files.

How to do it...

  1. Let us derive the FileWriter class from the iOStream interface. We add the Open() and Close() member functions on top of the iOStream interface and carefully implement the Write() operation. Our output stream implementation does not use memory-mapped files and uses ordinary file descriptors, as shown in the following code:

    class FileWriter: public iOStream
    {
    public:
      FileWriter(): FPosition( 0 ) {}
      virtual ~FileWriter() { Close(); }
    
      bool Open( const std::string& FileName )
      {
        FFileName = FileName;
  2. We split Android and Windows-specific code paths using defines:

    #ifdef _WIN32
        FMapFile = CreateFile( FFileName.c_str(),GENERIC_WRITE, FILE_SHARE_READ...