Book Image

Android NDK Game Development Cookbook

Book Image

Android NDK Game Development Cookbook

Overview of this book

Android NDK is used for multimedia applications which require direct access to a system's resources. Android NDK is also the key for portability, which in turn provides a reasonably comfortable development and debugging process using familiar tools such as GCC and Clang toolchains. If your wish to build Android games using this amazing framework, then this book is a must-have.This book provides you with a number of clear step-by-step recipes which will help you to start developing mobile games with Android NDK and boost your productivity debugging them on your computer. This book will also provide you with new ways of working as well as some useful tips and tricks that will demonstrably increase your development speed and efficiency.This book will take you through a number of easy-to-follow recipes that will help you to take advantage of the Android NDK as well as some popular C++ libraries. It presents Android application development in C++ and shows you how to create a complete gaming application. You will learn how to write portable multithreaded C++ code, use HTTP networking, play audio files, use OpenGL ES, to render high-quality text, and how to recognize user gestures on multi-touch devices. If you want to leverage your C++ skills in mobile development and add performance to your Android applications, then this is the book for you.
Table of Contents (16 chapters)
Android NDK Game Development Cookbook
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

Working with in-memory files


Sometimes it is very convenient to be able to treat some arbitrary in-memory runtime generated data as if it were in a file. As an example, let's consider using a JPEG image downloaded from a photo hosting, as an OpenGL texture. We do not need to save it into the internal storage, as it is a waste of CPU time. We also do not want to write separate code for loading images from memory. Since we have our abstract iIStream and iRawFile interfaces, we just implement the latter to support memory blocks as the data source.

Getting ready

In the previous recipes, we already used the Blob class, which is a simple wrapper around a void* buffer.

How to do it...

  1. Our iRawFile interface consists of two methods: GetFileData() and GetFileSize(). We just delegate these calls to an instance of Blob:

    class ManagedMemRawFile: public iRawFile
    {
    public:
      ManagedMemRawFile(): FBlob( NULL ) {}
      virtual const ubyte* GetFileData() const
      { return ( const ubyte* )FBlob->GetData(); }
     ...