Book Image

Unity 5.x Game AI Programming Cookbook

By : Jorge Palacios
5 (1)
Book Image

Unity 5.x Game AI Programming Cookbook

5 (1)
By: Jorge Palacios

Overview of this book

Unity 5 comes fully packaged with a toolbox of powerful features to help game and app developers create and implement powerful game AI. Leveraging these tools via Unity’s API or built-in features allows limitless possibilities when it comes to creating your game’s worlds and characters. This practical Cookbook covers both essential and niche techniques to help you be able to do that and more. This Cookbook is engineered as your one-stop reference to take your game AI programming to the next level. Get to grips with the essential building blocks of working with an agent, programming movement and navigation in a game environment, and improving your agent's decision making and coordination mechanisms - all through hands-on examples using easily customizable techniques. Discover how to emulate vision and hearing capabilities for your agent, for natural and humanlike AI behaviour, and improve them with the help of graphs. Empower your AI with decision-making functions through programming simple board games such as Tic-Tac-Toe and Checkers, and orchestrate agent coordination to get your AIs working together as one.
Table of Contents (15 chapters)
Unity 5.x Game AI Programming Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Predicting a projectile's landing spot


After a projectile is shot, some agents need to make a run for it, if we're talking about a grenade, or look at it when we're developing a sports game. In either case, it's important to predict the projectile's landing spot in order to make decisions:

Getting ready

Before we get into predicting the landing position, it's important to know the time left before it hits the ground (or reaches a certain position). Thus, instead of creating new behaviors, we need to update the Projectile class.

How to do it...

  1. First, we need to add the GetLandingTime function to compute the landing time:

    public float GetLandingTime (float height = 0.0f)
    {
        Vector3 position = transform.position;
        float time = 0.0f;
        float valueInt = (direction.y * direction.y) * (speed * speed);
        valueInt = valueInt - (Physics.gravity.y * 2 * (position.y - height));
        valueInt = Mathf.Sqrt(valueInt);
        float valueAdd = (-direction.y) * speed;
        float valueSub = (-direction.y) * speed;
        valueAdd = (valueAdd + valueInt) / Physics.gravity.y;
        valueSub = (valueSub - valueInt) / Physics.gravity.y;
        if (float.IsNaN(valueAdd) && !float.IsNaN(valueSub))
            return valueSub;
        else if (!float.IsNaN(valueAdd) && float.IsNaN(valueSub))
            return valueAdd;
        else if (float.IsNaN(valueAdd) && float.IsNaN(valueSub))
            return -1.0f;
        time = Mathf.Max(valueAdd, valueSub);
        return time;
    }
  2. Now, we add the GetLandingPos function to predict the landing spot:

    public Vector3 GetLandingPos (float height = 0.0f)
    {
        Vector3 landingPos = Vector3.zero;
        float time = GetLandingTime();
        if (time < 0.0f)
            return landingPos;
        landingPos.y = height;
        landingPos.x = firePos.x + direction.x * speed * time;
        landingPos.z = firePos.z + direction.z * speed * time;
        return landingPos;
    }

How it works...

First, we solve the equation from the previous recipe for a fixed height and, given the projectile's current position and speed, we are able to get the time at which the projectile will reach the given height.

There's more...

Take into account the NaN validation. It's placed that way because there may be two, one, or no solution to the equation. Furthermore, when the landing time is less than zero, it means the projectile won't be able to reach the target height.