Book Image

Game Physics Cookbook

By : Gabor Szauer
Book Image

Game Physics Cookbook

By: Gabor Szauer

Overview of this book

Physics is really important for game programmers who want to add realism and functionality to their games. Collision detection in particular is a problem that affects all game developers, regardless of the platform, engine, or toolkit they use. This book will teach you the concepts and formulas behind collision detection. You will also be taught how to build a simple physics engine, where Rigid Body physics is the main focus, and learn about intersection algorithms for primitive shapes. You’ll begin by building a strong foundation in mathematics that will be used throughout the book. We’ll guide you through implementing 2D and 3D primitives and show you how to perform effective collision tests for them. We then pivot to one of the harder areas of game development—collision detection and resolution. Further on, you will learn what a Physics engine is, how to set up a game window, and how to implement rendering. We’ll explore advanced physics topics such as constraint solving. You’ll also find out how to implement a rudimentary physics engine, which you can use to build an Angry Birds type of game or a more advanced game. By the end of the book, you will have implemented all primitive and some advanced collision tests, and you will be able to read on geometry and linear Algebra formulas to take forward to your own games!
Table of Contents (27 chapters)
Game Physics Cookbook
About the Author
About the Reviewer
Customer Feedback


The transpose of matrix M, written as is a matrix in which every element i, j equals the element j, i of the original matrix. The transpose of a matrix can be acquired by reflecting the matrix over its main diagonal, writing the rows of M as the columns of , or by writing the columns of M as the rows of . We can express the transpose for each component of a matrix with the following equation:

The transpose operation replaces the rows of a matrix with its columns:

Getting ready

We're going to create a non-nested loop that serves as a generic Transpose function. This function will be able to transpose matrices of any dimension. We're then going to create Transpose functions specific to 2 X 2, 3 X 3, and 4 X 4 matrices. These more specific functions are going to call the generic Transpose with the appropriate arguments.

How to do it…

Follow these steps to implement a generic transpose function and transpose functions for two, three and four dimensional square matrices:

  1. Add...