Book Image

Game Development Patterns and Best Practices

By : John P. Doran, Matt Casanova
Book Image

Game Development Patterns and Best Practices

By: John P. Doran, Matt Casanova

Overview of this book

You’ve learned how to program, and you’ve probably created some simple games at some point, but now you want to build larger projects and find out how to resolve your problems. So instead of a coder, you might now want to think like a game developer or software engineer. To organize your code well, you need certain tools to do so, and that’s what this book is all about. You will learn techniques to code quickly and correctly, while ensuring your code is modular and easily understandable. To begin, we will start with the core game programming patterns, but not the usual way. We will take the use case strategy with this book. We will take an AAA standard game and show you the hurdles at multiple stages of development. Similarly, various use cases are used to showcase other patterns such as the adapter pattern, prototype pattern, flyweight pattern, and observer pattern. Lastly, we’ll go over some tips and tricks on how to refactor your code to remove common code smells and make it easier for others to work with you. By the end of the book you will be proficient in using the most popular and frequently used patterns with the best practices.
Table of Contents (19 chapters)
Title Page
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
4
Artificial Intelligence Using the State Pattern

Triple buffering


Turning on VSync in our games can improve the look of our graphics because we are guaranteed that tearing will never occur. Unfortunately, if our game frame isn't completed in time for the next refresh, the graphics card waits until the next V-Blank to swap buffers. This is true even if our game misses the refresh by only 1/100th of a second. If our frame is off by this short amount, our fps drops to 30. This is because the content of the back buffer hasn't been swapped yet, so we can't start drawing the next frame.

It would be nice if we could start drawing the next frame while still waiting for the V-Blank signal. To do this, we would need an extra framebuffer to draw to while we are waiting. This is exactly how triple buffering works.

For triple buffering we have a total of three framebuffers. For a 1280 x 1024 display with 4 bytes per pixel we would need a total of 15 megabytes. However, by using this extra memory, we will always have a framebuffer to draw to, so we should...