Book Image

Game Development Patterns and Best Practices

By : John P. Doran, Matt Casanova
Book Image

Game Development Patterns and Best Practices

By: John P. Doran, Matt Casanova

Overview of this book

You’ve learned how to program, and you’ve probably created some simple games at some point, but now you want to build larger projects and find out how to resolve your problems. So instead of a coder, you might now want to think like a game developer or software engineer. To organize your code well, you need certain tools to do so, and that’s what this book is all about. You will learn techniques to code quickly and correctly, while ensuring your code is modular and easily understandable. To begin, we will start with the core game programming patterns, but not the usual way. We will take the use case strategy with this book. We will take an AAA standard game and show you the hurdles at multiple stages of development. Similarly, various use cases are used to showcase other patterns such as the adapter pattern, prototype pattern, flyweight pattern, and observer pattern. Lastly, we’ll go over some tips and tricks on how to refactor your code to remove common code smells and make it easier for others to work with you. By the end of the book you will be proficient in using the most popular and frequently used patterns with the best practices.
Table of Contents (19 chapters)
Title Page
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
4
Artificial Intelligence Using the State Pattern

Time-based movement and animation


We have covered a lot so far in this chapter. We have been looking at the frame rate and refresh rate so we can understand how it relates to what is displayed on screen. However, the frame rate of a game has the chance to impact upon every engine of the game. It can even affect testing and debugging during development.

At the start of a game's development, the game logic isn't very complicated and the unit count is very low. For this reason, it is common to see thousands of frames per second. As development continues, this frame rate will slowly drop to hundreds and then (hopefully) settle around 60 frames per second. Imagine if there was some game logic to spawn an enemy once every 10 frames. Depending on where we are in the development cycle, we might be spawning six or sixty enemies every second. This makes the game very hard to test and debug because it is not consistent.

What makes this problem even more interesting is that, even within a single play...