Book Image

Unity 2018 Artificial Intelligence Cookbook - Second Edition

By : Jorge Palacios
Book Image

Unity 2018 Artificial Intelligence Cookbook - Second Edition

By: Jorge Palacios

Overview of this book

Interactive and engaging games come with intelligent enemies, and this intellectual behavior is combined with a variety of techniques collectively referred to as Artificial Intelligence. Exploring Unity's API, or its built-in features, allows limitless possibilities when it comes to creating your game's worlds and characters. This cookbook covers both essential and niche techniques to help you take your AI programming to the next level. To start with, you’ll quickly run through the essential building blocks of working with an agent, programming movement, and navigation in a game environment, followed by improving your agent's decision-making and coordination mechanisms – all through hands-on examples using easily customizable techniques. You’ll then discover how to emulate the vision and hearing capabilities of your agent for natural and humanlike AI behavior, and later improve the agents with the help of graphs. This book also covers the new navigational mesh with improved AI and pathfinding tools introduced in the Unity 2018 update. You’ll empower your AI with decision-making functions by programming simple board games, such as tic-tac-toe and checkers, and orchestrate agent coordination to get your AIs working together as one. By the end of this book, you’ll have gained expertise in AI programming and developed creative and interactive games.
Table of Contents (12 chapters)

Facing objects

Real-world aiming, just like in combat simulators, works a little differently to the widely-used automatic aiming process in almost every game. Imagine that you need to implement an agent controlling a tank turret or a humanized sniper; that's when this recipe comes in handy.

Getting ready

We need to make some modifications to our AgentBehaviour class:

  1. Add new member values to limit some of the existing ones:
public float maxSpeed; 
public float maxAccel; 
public float maxRotation; 
public float maxAngularAccel;

  1. Add a function called MapToRange. This function helps in finding the actual direction of rotation after two orientation values are subtracted:
public float MapToRange (float rotation) { 
    rotation %= 360.0f; 
    if (Mathf.Abs(rotation) > 180.0f) { 
        if (rotation < 0.0f) 
            rotation += 360.0f; 
        else 
            rotation -= 360.0f; 
    } 
    return rotation; 
} 
  1. Also, we need to create a basic behavior called Align that is the stepping stone for the facing algorithm. It uses the same principle as Arrive, but only in terms of rotation:
using UnityEngine; 
using System.Collections; 
 
public class Align : AgentBehaviour 
{ 
    public float targetRadius; 
    public float slowRadius; 
    public float timeToTarget = 0.1f; 
 
    public override Steering GetSteering() 
    { 
        Steering steering = new Steering(); 
        float targetOrientation = target.GetComponent<Agent>().orientation; 
        float rotation = targetOrientation - agent.orientation; 
        rotation = MapToRange(rotation); 
        float rotationSize = Mathf.Abs(rotation); 
        if (rotationSize < targetRadius) 
            return steering; 
        float targetRotation; 
        if (rotationSize > slowRadius) 
            targetRotation = agent.maxRotation; 
        else 
            targetRotation = agent.maxRotation * rotationSize / slowRadius; 
        targetRotation *= rotation / rotationSize; 
        steering.angular = targetRotation - agent.rotation; 
        steering.angular /= timeToTarget; 
        float angularAccel = Mathf.Abs(steering.angular); 
        if (angularAccel > agent.maxAngularAccel) 
        { 
            steering.angular /= angularAccel; 
            steering.angular *= agent.maxAngularAccel; 
        } 
        return steering; 
    } 
} 

How to do it...

We can now proceed to implement our facing algorithm that derives from Align:

  1. Create the Face class along with a private auxiliary target member variable:
using UnityEngine; 
using System.Collections; 
 
public class Face : Align 
{ 
    protected GameObject targetAux; 
} 
  1. Override the Awake function to set up everything and swap references:
public override void Awake() 
{ 
    base.Awake(); 
    targetAux = target; 
    target = new GameObject(); 
    target.AddComponent<Agent>(); 
} 
  1. Also, implement the OnDestroy function to handle references and avoid memory issues:
void OnDestroy () 
{ 
    Destroy(target); 
}

  1. Finally, define the GetSteering function:
public override Steering GetSteering() 
{ 
    Vector3 direction = targetAux.transform.position - transform.position; 
    if (direction.magnitude > 0.0f) 
    { 
        float targetOrientation = Mathf.Atan2(direction.x, direction.z); 
        targetOrientation *= Mathf.Rad2Deg; 
        target.GetComponent<Agent>().orientation = targetOrientation; 
    } 
    return base.GetSteering(); 
}

How it works...

The algorithm computes the internal target orientation according to the vector between the agent and the real target. Then, it just delegates the work to its parent class.