Book Image

Unity 2018 Artificial Intelligence Cookbook - Second Edition

By : Jorge Palacios
Book Image

Unity 2018 Artificial Intelligence Cookbook - Second Edition

By: Jorge Palacios

Overview of this book

Interactive and engaging games come with intelligent enemies, and this intellectual behavior is combined with a variety of techniques collectively referred to as Artificial Intelligence. Exploring Unity's API, or its built-in features, allows limitless possibilities when it comes to creating your game's worlds and characters. This cookbook covers both essential and niche techniques to help you take your AI programming to the next level. To start with, you’ll quickly run through the essential building blocks of working with an agent, programming movement, and navigation in a game environment, followed by improving your agent's decision-making and coordination mechanisms – all through hands-on examples using easily customizable techniques. You’ll then discover how to emulate the vision and hearing capabilities of your agent for natural and humanlike AI behavior, and later improve the agents with the help of graphs. This book also covers the new navigational mesh with improved AI and pathfinding tools introduced in the Unity 2018 update. You’ll empower your AI with decision-making functions by programming simple board games, such as tic-tac-toe and checkers, and orchestrate agent coordination to get your AIs working together as one. By the end of this book, you’ll have gained expertise in AI programming and developed creative and interactive games.
Table of Contents (12 chapters)

Predicting a projectile's landing spot

After a projectile is shot by the player, agents (our AI) need to either avoid it or look for it. For example, the agents need to run from a grenade to be kept alive, or run towards a soccer ball to take control. In either case, it's important for the agents to predict the projectile's landing spot to make decisions.

In this recipe, we will learn how to calculate such landing spots.

Getting ready

Before we get into predicting the landing position, it's important to know the time left before it hits the ground (or reaches a certain position). Thus, instead of creating new behaviors, we need to update the Projectile class.

How to do it...

  1. First, we need to add the GetLandingTime function to compute the landing time:
public float GetLandingTime (float height = 0.0f) 
{ 
    Vector3 position = transform.position; 
    float time = 0.0f; 
    float valueInt = (direction.y * direction.y) * (speed * speed); 
    valueInt = valueInt - (Physics.gravity.y * 2 * (position.y - height)); 
    valueInt = Mathf.Sqrt(valueInt); 
    float valueAdd = (-direction.y) * speed; 
    float valueSub = (-direction.y) * speed; 
    valueAdd = (valueAdd + valueInt) / Physics.gravity.y; 
    valueSub = (valueSub - valueInt) / Physics.gravity.y; 
    if (float.IsNaN(valueAdd) && !float.IsNaN(valueSub)) 
        return valueSub; 
    else if (!float.IsNaN(valueAdd) && float.IsNaN(valueSub)) 
        return valueAdd; 
    else if (float.IsNaN(valueAdd) && float.IsNaN(valueSub)) 
        return -1.0f; 
    time = Mathf.Max(valueAdd, valueSub); 
    return time; 
} 
  1. Now, we add the GetLandingPos function to predict the landing spot:
public Vector3 GetLandingPos (float height = 0.0f) 
{ 
    Vector3 landingPos = Vector3.zero; 
    float time = GetLandingTime(); 
    if (time < 0.0f) 
        return landingPos; 
    landingPos.y = height; 
    landingPos.x = firePos.x + direction.x * speed * time; 
    landingPos.z = firePos.z + direction.z * speed * time; 
    return landingPos; 
}

How it works...

First, we are solving the equation from the previous recipe for a fixed height, and, given the projectile's current position and speed, we are able to get the time at which the projectile will reach the given height.

There's more...

Remember to take into account the NaN validation. It's placed that way because there may be one, two, or no solutions to the equation. Furthermore, when the landing time is less than zero, it means the projectile won't be able to reach the target height.