Book Image

OpenGL 4 Shading Language Cookbook - Third Edition

By : David Wolff
Book Image

OpenGL 4 Shading Language Cookbook - Third Edition

By: David Wolff

Overview of this book

OpenGL 4 Shading Language Cookbook, Third Edition provides easy-to-follow recipes that first walk you through the theory and background behind each technique, and then proceed to showcase and explain the GLSL and OpenGL code needed to implement them. The book begins by familiarizing you with beginner-level topics such as compiling and linking shader programs, saving and loading shader binaries (including SPIR-V), and using an OpenGL function loader library. We then proceed to cover basic lighting and shading effects. After that, you'll learn to use textures, produce shadows, and use geometry and tessellation shaders. Topics such as particle systems, screen-space ambient occlusion, deferred rendering, depth-based tessellation, and physically based rendering will help you tackle advanced topics. OpenGL 4 Shading Language Cookbook, Third Edition also covers advanced topics such as shadow techniques (including the two of the most common techniques: shadow maps and shadow volumes). You will learn how to use noise in shaders and how to use compute shaders. The book provides examples of modern shading techniques that can be used as a starting point for programmers to expand upon to produce modern, interactive, 3D computer-graphics applications.
Table of Contents (17 chapters)
Title Page
Packt Upsell
Contributors
Preface
Index

Tessellating based on depth


One of the greatest things about tessellation shaders is how easy it is to implement level-of-detail (LOD) algorithms. LOD is a general term in computer graphics that refers to the process of increasing/decreasing the complexity of an object's geometry with respect to the distance from the viewer (or other factors). As an object moves farther away from the camera, less geometric detail is needed to represent the shape because the overall size of the object becomes smaller. However, as the object moves closer to the camera, the object fills more and more of the screen, and more geometric detail is needed to maintain the desired appearance (smoothness or lack of other geometric artifacts).

The following image shows a few teapots rendered with tessellation levels that depend on distance from the camera. Each teapot is rendered using exactly the same code on the OpenGL side. The TCS automatically varies the tessellation levels based on depth:

When tessellation shaders...