Book Image

Mastering Graphics Programming with Vulkan

By : Marco Castorina, Gabriel Sassone
5 (2)
Book Image

Mastering Graphics Programming with Vulkan

5 (2)
By: Marco Castorina, Gabriel Sassone

Overview of this book

Vulkan is now an established and flexible multi-platform graphics API. It has been adopted in many industries, including game development, medical imaging, movie productions, and media playback but learning it can be a daunting challenge due to its low-level, complex nature. Mastering Graphics Programming with Vulkan is designed to help you overcome this difficulty, providing a practical approach to learning one of the most advanced graphics APIs. In Mastering Graphics Programming with Vulkan, you’ll focus on building a high-performance rendering engine from the ground up. You’ll explore Vulkan’s advanced features, such as pipeline layouts, resource barriers, and GPU-driven rendering, to automate tedious tasks and create efficient workflows. Additionally, you'll delve into cutting-edge techniques like mesh shaders and real-time ray tracing, elevating your graphics programming to the next level. By the end of this book, you’ll have a thorough understanding of modern rendering engines to confidently handle large-scale projects. Whether you're developing games, simulations, or visual effects, this guide will equip you with the skills and knowledge to harness Vulkan’s full potential.
Table of Contents (21 chapters)
1
Part 1: Foundations of a Modern Rendering Engine
7
Part 2: GPU-Driven Rendering
13
Part 3: Advanced Rendering Techniques

Introduction to Dynamic Diffuse Global Illumination (DDGI)

In this section, we will explain the algorithm behind DDGI. DDGI is based on two main tools: light probes and irradiance volumes:

  • Light probes are points in space, represented as spheres, that encode light information
  • Irradiance volumes are defined as spaces that contain three-dimensional grids of light probes with fixed spacing between them

Sampling is easier when the layout is regular, even though we will see some improvements to placements later. Probes are encoded using octahedral mapping, a convenient way to map a square to a sphere. Links to the math behind octahedral mapping have been provided in the Further reading section.

The core idea behind DDGI is to dynamically update probes using ray tracing: for each probe, we will cast some rays and calculate the radiance at the triangle intersection. Radiance is calculated with the dynamic lights present in the engine, reacting in real time to any light...