Book Image

3D Graphics Rendering Cookbook

By : Sergey Kosarevsky, Viktor Latypov
4 (2)
Book Image

3D Graphics Rendering Cookbook

4 (2)
By: Sergey Kosarevsky, Viktor Latypov

Overview of this book

OpenGL is a popular cross-language, cross-platform application programming interface (API) used for rendering 2D and 3D graphics, while Vulkan is a low-overhead, cross-platform 3D graphics API that targets high-performance applications. 3D Graphics Rendering Cookbook helps you learn about modern graphics rendering algorithms and techniques using C++ programming along with OpenGL and Vulkan APIs. The book begins by setting up a development environment and takes you through the steps involved in building a 3D rendering engine with the help of basic, yet self-contained, recipes. Each recipe will enable you to incrementally add features to your codebase and show you how to integrate different 3D rendering techniques and algorithms into one large project. You'll also get to grips with core techniques such as physically based rendering, image-based rendering, and CPU/GPU geometry culling, to name a few. As you advance, you'll explore common techniques and solutions that will help you to work with large datasets for 2D and 3D rendering. Finally, you'll discover how to apply optimization techniques to build performant and feature-rich graphics applications. By the end of this 3D rendering book, you'll have gained an improved understanding of best practices used in modern graphics APIs and be able to create fast and versatile 3D rendering frameworks.
Table of Contents (12 chapters)

Organizing mesh rendering in Vulkan

In Chapter 3, Getting Started with OpenGL and Vulkan, we learned how to render a textured 3D model on the screen using Vulkan in a direct and pretty ad hoc way. Now we will show how to move one step closer to creating a more scalable 3D model renderer with Vulkan. In the subsequent chapters, we will further generalize the rendering approach so that we can build a minimalistic Vulkan rendering engine from scratch, step by step.

Getting ready

Revisit the Organizing Vulkan frame rendering code recipe and recall how the RendererBase interface works. The code we will discuss in this recipe can be found in shared/vkRenderers/VulkanModelRenderer.cpp and the corresponding header file.

How to do it...

Let's declare the ModelRenderer class, which contains a texture and combined vertex and index buffers:

  1. The declaration looks as follows:
    class ModelRenderer: public RendererBase {