Book Image

3D Graphics Rendering Cookbook

By : Sergey Kosarevsky, Viktor Latypov
4 (2)
Book Image

3D Graphics Rendering Cookbook

4 (2)
By: Sergey Kosarevsky, Viktor Latypov

Overview of this book

OpenGL is a popular cross-language, cross-platform application programming interface (API) used for rendering 2D and 3D graphics, while Vulkan is a low-overhead, cross-platform 3D graphics API that targets high-performance applications. 3D Graphics Rendering Cookbook helps you learn about modern graphics rendering algorithms and techniques using C++ programming along with OpenGL and Vulkan APIs. The book begins by setting up a development environment and takes you through the steps involved in building a 3D rendering engine with the help of basic, yet self-contained, recipes. Each recipe will enable you to incrementally add features to your codebase and show you how to integrate different 3D rendering techniques and algorithms into one large project. You'll also get to grips with core techniques such as physically based rendering, image-based rendering, and CPU/GPU geometry culling, to name a few. As you advance, you'll explore common techniques and solutions that will help you to work with large datasets for 2D and 3D rendering. Finally, you'll discover how to apply optimization techniques to build performant and feature-rich graphics applications. By the end of this 3D rendering book, you'll have gained an improved understanding of best practices used in modern graphics APIs and be able to create fast and versatile 3D rendering frameworks.
Table of Contents (12 chapters)

Organizing the storage of mesh data

In Chapter 3, Getting Started with OpenGL and Vulkan and Chapter 4, Adding User Interaction and Productivity Tools, we used fixed formats for our meshes, which changed between demos and also implicitly included a description of the material; for example, a hardcoded texture was used to provide color information. Let's define a unified mesh storage format that covers all use cases for the remainder of this book.

A triangle mesh is defined by indices and vertices. Each vertex is defined as a set of floating-point attributes. All of the auxiliary physical properties of an object, such as collision detection data, mass, and moments of inertia, can be represented by a mesh. In comparison, other information, such as surface material properties, can be stored outside of the mesh as external metadata.

Getting ready

This recipe describes the basic data structures that we will use to store mesh data for the remainder of this book. The full corresponding...