Book Image

OpenGL Development Cookbook

By : Muhammad Mobeen Movania
Book Image

OpenGL Development Cookbook

By: Muhammad Mobeen Movania

Overview of this book

OpenGL is the leading cross-language, multi-platform API used by masses of modern games and applications in a vast array of different sectors. Developing graphics with OpenGL lets you harness the increasing power of GPUs and really take your visuals to the next level. OpenGL Development Cookbook is your guide to graphical programming techniques to implement 3D mesh formats and skeletal animation to learn and understand OpenGL. OpenGL Development Cookbook introduces you to the modern OpenGL. Beginning with vertex-based deformations, common mesh formats, and skeletal animation with GPU skinning, and going on to demonstrate different shader stages in the graphics pipeline. OpenGL Development Cookbook focuses on providing you with practical examples on complex topics, such as variance shadow mapping, GPU-based paths, and ray tracing. By the end you will be familiar with the latest advanced GPU-based volume rendering techniques.
Table of Contents (15 chapters)
OpenGL Development Cookbook
About the Author
About the Reviewers

Implementing collision detection and response on a transform feedback-based cloth model

In this recipe, we will build on top of the previous recipe and add collision detection and response to the cloth model.

Getting ready

The code for this recipe is contained in the Chapter8/TransformFeedbackClothCollision directory. For this recipe, the setup code and rendering code remains the same as in the previous recipe. The only change is the addition of the ellipsoid/sphere collision code.

How to do it…

Let us start this recipe by following these simple steps:

  1. Generate the geometry and topology for a piece of cloth by creating a set of points and their connectivity. Bind this data to a buffer object as in the previous recipe.

  2. Set up a pair of vertex array objects and buffer objects as in the previous recipe. Also attach buffer textures for easier access to the buffer object memory in the vertex shader.

  3. Generate a transform feedback object and pass the attribute names that will be output from our deformation...