Book Image

Android NDK Game Development Cookbook

Book Image

Android NDK Game Development Cookbook

Overview of this book

Android NDK is used for multimedia applications which require direct access to a system's resources. Android NDK is also the key for portability, which in turn provides a reasonably comfortable development and debugging process using familiar tools such as GCC and Clang toolchains. If your wish to build Android games using this amazing framework, then this book is a must-have.This book provides you with a number of clear step-by-step recipes which will help you to start developing mobile games with Android NDK and boost your productivity debugging them on your computer. This book will also provide you with new ways of working as well as some useful tips and tricks that will demonstrably increase your development speed and efficiency.This book will take you through a number of easy-to-follow recipes that will help you to take advantage of the Android NDK as well as some popular C++ libraries. It presents Android application development in C++ and shows you how to create a complete gaming application. You will learn how to write portable multithreaded C++ code, use HTTP networking, play audio files, use OpenGL ES, to render high-quality text, and how to recognize user gestures on multi-touch devices. If you want to leverage your C++ skills in mobile development and add performance to your Android applications, then this is the book for you.
Table of Contents (16 chapters)
Android NDK Game Development Cookbook
Credits
About the Authors
About the Reviewers
www.PacktPub.com
Preface
Index

Implementing mount points


It is convenient to access all of the application's resources as if they all were in the same folder tree, no matter where they actually come from—from an actual file, a .zip archive on disk, or an in-memory archive downloaded over a network. Let us implement an abstraction layer for this kind of access.

Getting ready

We assume that the reader is familiar with the concepts of NTFS reparse points (http://en.wikipedia.org/wiki/NTFS_reparse_point), UNIX symbolic links (http://en.wikipedia.org/wiki/Symbolic_link), and directory mounting procedures (http://en.wikipedia.org/wiki/Mount_(Unix)).

How to do it...

  1. Our folders tree will consist of abstract mount points. A single mount point can correspond to a path to an existing OS folder, a .zip archive on disk, a path inside a .zip archive, or it can even represent a removed network path.

    Note

    Try to extend the proposed framework with network paths mount points.

    class iMountPoint: public iObject
    {
    public:
  2. Check if the file exists...