Book Image

Unity 5.x Game AI Programming Cookbook

By : Jorge Palacios
5 (1)
Book Image

Unity 5.x Game AI Programming Cookbook

5 (1)
By: Jorge Palacios

Overview of this book

Unity 5 comes fully packaged with a toolbox of powerful features to help game and app developers create and implement powerful game AI. Leveraging these tools via Unity’s API or built-in features allows limitless possibilities when it comes to creating your game’s worlds and characters. This practical Cookbook covers both essential and niche techniques to help you be able to do that and more. This Cookbook is engineered as your one-stop reference to take your game AI programming to the next level. Get to grips with the essential building blocks of working with an agent, programming movement and navigation in a game environment, and improving your agent's decision making and coordination mechanisms - all through hands-on examples using easily customizable techniques. Discover how to emulate vision and hearing capabilities for your agent, for natural and humanlike AI behaviour, and improve them with the help of graphs. Empower your AI with decision-making functions through programming simple board games such as Tic-Tac-Toe and Checkers, and orchestrate agent coordination to get your AIs working together as one.
Table of Contents (15 chapters)
Unity 5.x Game AI Programming Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Introducing Minimax


Minimax is an algorithm based on the decision to minimize the possible loss for the worst case (maximum loss). Besides game development and game theory, Minimax is a decision rule and is also used in statistics, decision theory, and philosophy.

This technique was originally formulated for the two-player zero-sum game theory, meaning that one player's win is the opponent's loss. However, in this case, it is flexible enough to handle more than two players.

Getting ready…

It is important to know the difference between a dynamic member function and a static member function, as well as recursion. A dynamic member function is bound to the instance of the class, while the static member function is bound to the class itself. The static method allows us to call it without instantiating an object. This is great for general-purpose algorithms, such as the one developed in this recipe.

In the case of recursion, it's not always clear that (unlike iteration) this is an iterative process...