Book Image

Unreal Engine Physics Essentials

By : Devin Sherry, Katax Emperore
Book Image

Unreal Engine Physics Essentials

By: Devin Sherry, Katax Emperore

Overview of this book

This book gives readers practical insight into the mathematical and physics principles necessary to properly implement physics within Unreal Engine 4. Discover how to manipulate physics within Unreal Engine 4 by learning basic real-world mathematical and physics concepts that assist in the implementation of physics-based objects in your game world. Then, you'll be introduced to PhAT (Physics Asset Tool) within Unreal Engine 4 to learn more about developing game physics objects for your game world. Next, dive into Unreal Engine 4’s collision generation, physical materials, blueprints, constraints, and more to get hands-on experience with the tools provided by Epic to create real-world physics in Unreal Engine 4. Lastly, you will create a working Vehicle Blueprint that uses all the concepts covered in this book, as well as covering advanced physics-based topics.
Table of Contents (15 chapters)
Unreal Engine Physics Essentials
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Preface
Index

How to use scientific notation?


The main logic behind using scientific notation is to take a very large or small number and convert it to an easy to read/write expression. For an example that isn't a power of 10, the number 0.5 converted to scientific notation would read as 5 * 10^-1. We reached this expression by moving the decimal point in 0.5 once to the right-hand side making the number into 5. The goal of using scientific notation is to reach the base number, meaning a number between 1 and 9. As we had to move the decimal point to the right-hand side, we know that the expression would read as a negative exponent, whereas if we were to move the decimal point to the left-hand side, the exponent would be positive. The number 5 is our base, and we multiply it by 10 with an exponent that is equal to the number of times we moved the decimal point to reach the said base. In our case, it would be 1. Lastly, we know that the exponent would be negative because we are dealing with 0.5, a number less than 1, and we had to move the decimal point to the right-hand side. As a result, our scientific notation of 0.5 would be 5 * 10^-1. Here are a few more examples of large and small numbers as expressed in the scientific notation:

  • 642,300,544,000 – 6.42300544 * 10^11

  • .00002055 – 2.055 * 10^-5

  • 8,549,248.5004 – 8.549285004 * 10^6

  • .0125174 – 1.25174 * 10^-2