Book Image

Mastering SFML Game Development

By : Raimondas Pupius
Book Image

Mastering SFML Game Development

By: Raimondas Pupius

Overview of this book

SFML is a cross-platform software development library written in C++ with bindings available for many programming languages. It provides a simple interface to the various components of your PC, to ease the development of games and multimedia applications. This book will help you become an expert of SFML by using all of its features to its full potential. It begins by going over some of the foundational code necessary in order to make our RPG project run. By the end of chapter 3, we will have successfully picked up and deployed a fast and efficient particle system that makes the game look much more ‘alive’. Throughout the next couple of chapters, you will be successfully editing the game maps with ease, all thanks to the custom tools we’re going to be building. From this point on, it’s all about making the game look good. After being introduced to the use of shaders and raw OpenGL, you will be guided through implementing dynamic scene lighting, the use of normal and specular maps, and dynamic soft shadows. However, no project is complete without being optimized first. The very last chapter will wrap up our project by making it lightning fast and efficient.
Table of Contents (17 chapters)
Mastering SFML Game Development
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Moving the camera around


Having a programmable camera is nice, but it still does not allow us to freely roam the scene. Let 's actually give our camera class the ability to be manipulated in real time, so that we can have the illusion of floating around the world:

enum class GL_Direction{ Up, Down, Left, Right, Forward, Back }; 
 
class GL_Camera { 
public: 
  ... 
  void MoveBy(GL_Direction l_dir, float l_amount); 
  void OffsetLookBy(float l_speed, float l_x, float l_y); 
  ... 
}; 

As you can see, we are going to use two methods for that: one for moving the camera, and another for rotating it. We are also defining a helpful enumeration of all six possible directions.

Moving a position vector is fairly simple. Assume we have a scalar value that represents the speed of the camera. If we multiply it by a direction vector, we get a proportional position change based on which direction the vector was pointed at, like so:

With that in mind, let us implement the MoveBy() method:

void GL_Camera:...